- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Beiler, A. M. (1)
-
Flores, M. (1)
-
Khusnutdinova, D (1)
-
Moore, G. F. (1)
-
Reyes Cruz, E. A. (1)
-
Urbine, J. (1)
-
Wadsworth, B. L. (1)
-
Zenkov, Y. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Catalysts are central to energy conversion in biology and technology; they provide low-energy pathways for steering chemical transformations and are used in applications ranging from manufacturing fuels and fine chemicals to controlling the bioenergetic reactions essential to all living organisms. Accordingly, the study of homogeneous molecular catalysts, including porphyrins, has provided researchers significant insights regarding the mechanisms and structure−function relationships governing myriad catalytic processes, as well as design principles for further improving the performance of human-engineered catalysts. Our research group has recently reported on the favorable catalytic properties of piextended porphyrins for hydrogen evolution, demonstrating the promise of extended macrocycles as a design element and structural motif for preparing electrocatalysts. The pi-extended architecture provides an alternative strategy, compared to using electron-withdrawing or electron-donating functional groups, for adjusting the redox properties of a molecular catalyst and thus a promising avenue for catalyst design warranting further analysis.more » « less
An official website of the United States government

Full Text Available